Papers
Topics
Authors
Recent
2000 character limit reached

Sine kernel asymptotics for a class of singular measures (1011.3159v1)

Published 13 Nov 2010 in math.SP, math-ph, and math.MP

Abstract: We construct a family of measures on $\bbR$ that are purely singular with respect to Lebesgue measure, and yet exhibit universal sine-kernel asymptotics in the bulk. The measures are best described via their Jacobi recursion coefficients: these are sparse perturbations of the recursion coefficients corresponding to Chebyshev polynomials of the second kind. We prove convergence of the renormalized Christoffel-Darboux kernel to the sine kernel for any sufficiently sparse decaying perturbation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.