2000 character limit reached
Simulation-based Bayesian analysis for multiple changepoints
Published 12 Nov 2010 in stat.CO | (1011.2932v1)
Abstract: This paper presents a Markov chain Monte Carlo method to generate approximate posterior samples in retrospective multiple changepoint problems where the number of changes is not known in advance. The method uses conjugate models whereby the marginal likelihood for the data between consecutive changepoints is tractable. Inclusion of hyperpriors gives a near automatic algorithm providing a robust alternative to popular filtering recursions approaches in cases which may be sensitive to prior information. Three real examples are used to demonstrate the proposed approach.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.