Papers
Topics
Authors
Recent
Search
2000 character limit reached

Simulation-based Bayesian analysis for multiple changepoints

Published 12 Nov 2010 in stat.CO | (1011.2932v1)

Abstract: This paper presents a Markov chain Monte Carlo method to generate approximate posterior samples in retrospective multiple changepoint problems where the number of changes is not known in advance. The method uses conjugate models whereby the marginal likelihood for the data between consecutive changepoints is tractable. Inclusion of hyperpriors gives a near automatic algorithm providing a robust alternative to popular filtering recursions approaches in cases which may be sensitive to prior information. Three real examples are used to demonstrate the proposed approach.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.