Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 70 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Non-canonical extension of theta-functions and modular integrability of theta-constants (1011.1643v5)

Published 7 Nov 2010 in math.CA, math-ph, math.HO, math.MP, and nlin.SI

Abstract: This is an extended (factor 2.5) version of arXiv:math/0601371 and arXiv:0808.3486. We present new results in the theory of the classical $\theta$-functions of Jacobi: series expansions and defining ordinary differential equations (\odes). The proposed dynamical systems turn out to be Hamiltonian and define fundamental differential properties of theta-functions; they also yield an exponential quadratic extension of the canonical $\theta$-series. An integrability condition of these \odes\ explains appearance of the modular $\vartheta$-constants and differential properties thereof. General solutions to all the \odes\ are given. For completeness, we also solve the Weierstrassian elliptic modular inversion problem and consider its consequences. As a nontrivial application, we apply proposed techni-que to the Hitchin case of the sixth Painlev\'e equation.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube