Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Polytopes, Hopf algebras and Quasi-symmetric functions (1011.1536v1)

Published 6 Nov 2010 in math.CO

Abstract: In this paper we use the technique of Hopf algebras and quasi-symmetric functions to study the combinatorial polytopes. Consider the free abelian group $\mathcal{P}$ generated by all combinatorial polytopes. There are two natural bilinear operations on this group defined by a direct product $\times $ and a join $\divideontimes$ of polytopes. $(\mathcal{P},\times)$ is a commutative associative bigraded ring of polynomials, and $\mathcal{RP}=(\mathbb Z\varnothing\oplus\mathcal{P},\divideontimes)$ is a commutative associative threegraded ring of polynomials. The ring $\mathcal{RP}$ has the structure of a graded Hopf algebra. It turns out that $\mathcal{P}$ has a natural Hopf comodule structure over $\mathcal{RP}$. Faces operators $d_k$ that send a polytope to the sum of all its $(n-k)$-dimensional faces define on both rings the Hopf module structures over the universal Leibnitz-Hopf algebra $\mathcal{Z}$. This structure gives a ring homomorphism $\R\to\Qs\otimes\R$, where $\R$ is $\mathcal{P}$ or $\mathcal{RP}$. Composing this homomorphism with the characters $Pn\to\alphan$ of $\mathcal{P}$, $Pn\to\alpha{n+1}$ of $\mathcal{RP}$, and with the counit we obtain the ring homomorphisms $f\colon\mathcal{P}\to\Qs[\alpha]$, $f_{\mathcal{RP}}\colon\mathcal{RP}\to\Qs[\alpha]$, and $\F*:\mathcal{RP}\to\Qs$, where $F$ is the Ehrenborg transformation. We describe the images of these homomorphisms in terms of functional equations, prove that these images are rings of polynomials over $\mathbb Q$, and find the relations between the images, the homomorphisms and the Hopf comodule structures. For each homomorphism $f,\;f_{\mathcal{RP}}$, and $\F$ the images of two polytopes coincide if and only if they have equal flag $f$-vectors. Therefore algebraic structures on the images give the information about flag $f$-vectors of polytopes.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.