Tracy-Widom GUE law and symplectic invariants (1011.1418v2)
Abstract: We establish the relation between two objects: an integrable system related to Painleve II equation, and the symplectic invariants of a certain plane curve \Sigma_{TW} describing the average eigenvalue density of a random hermitian matrix spectrum near a hard edge (a bound for its maximal eigenvalue). This explains directly how the Tracy-Widow law F_{GUE}, governing the distribution of the maximal eigenvalue in hermitian random matrices, can also be recovered from symplectic invariants.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.