Papers
Topics
Authors
Recent
Search
2000 character limit reached

Santa Claus Schedules Jobs on Unrelated Machines

Published 4 Nov 2010 in cs.DS | (1011.1168v2)

Abstract: One of the classic results in scheduling theory is the 2-approximation algorithm by Lenstra, Shmoys, and Tardos for the problem of scheduling jobs to minimize makespan on unrelated machines, i.e., job j requires time p_{ij} if processed on machine i. More than two decades after its introduction it is still the algorithm of choice even in the restricted model where processing times are of the form p_{ij} in {p_j, \infty}. This problem, also known as the restricted assignment problem, is NP-hard to approximate within a factor less than 1.5 which is also the best known lower bound for the general version. Our main result is a polynomial time algorithm that estimates the optimal makespan of the restricted assignment problem within a factor 33/17 + \epsilon \approx 1.9412 + \epsilon, where \epsilon > 0 is an arbitrarily small constant. The result is obtained by upper bounding the integrality gap of a certain strong linear program, known as configuration LP, that was previously successfully used for the related Santa Claus problem. Similar to the strongest analysis for that problem our proof is based on a local search algorithm that will eventually find a schedule of the mentioned approximation guarantee, but is not known to converge in polynomial time.

Citations (107)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.