Papers
Topics
Authors
Recent
2000 character limit reached

Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains

Published 28 Oct 2010 in math.AG and math.NT | (1010.6038v4)

Abstract: Let $R$ be a 2-dimensional normal excellent henselian local domain in which 2 is invertible and let $L$ and $k$ be respectively its fraction field and residue field. Let $\Omega_R$ be the set of rank 1 discrete valuations of $L$ corresponding to codimension 1 points of regular proper models of $\Spec R$. We prove that a quadratic form $q$ over $L$ satisfies the local-global principle with respect to $\Omega_R$ in the following two cases: (1) $q$ has rank 3 or 4; (2) $q$ has rank $\ge 5$ and $R=A[y]$, where $A$ is a complete discrete valuation ring with a not too restrictive condition on the residue field $k$, which is satisfied when $k$ is $C_1$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.