Papers
Topics
Authors
Recent
Search
2000 character limit reached

Long-time dynamics in plate models with strong nonlinear damping

Published 24 Oct 2010 in math.DS | (1010.4991v1)

Abstract: We study long-time dynamics of a class of abstract second order in time evolution equations in a Hilbert space with the damping term depending both on displacement and velocity. This damping represents the nonlinear strong dissipation phenomenon perturbed with relatively compact terms. Our main result states the existence of a compact finite dimensional attractor. We study properties of this attractor. We also establish the existence of a fractal exponential attractor and give the conditions that guarantee the existence of a finite number of determining functionals. In the case when the set of equilibria is finite and hyperbolic we show that every trajectory is attracted by some equilibrium with exponential rate. Our arguments involve a recently developed method based on the "compensated" compactness and quasi-stability estimates. As an application we consider the nonlinear Kirchhoff, Karman and Berger plate models with different types of boundary conditions and strong damping terms. Our results can be also applied to the nonlinear wave equations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.