Absence of sign problem in two-dimensional N=(2,2) super Yang-Mills on lattice (1010.2948v3)
Abstract: We show that N=(2,2) SU(N) super Yang-Mills theory on lattice does not have sign problem in the continuum limit, that is, under the phase-quenched simulation phase of the determinant localizes to 1 and hence the phase-quench approximation becomes exact. Among several formulations, we study models by Cohen-Kaplan-Katz-Unsal (CKKU) and by Sugino. We confirm that the sign problem is absent in both models and that they converge to the identical continuum limit without fine tuning. We provide a simple explanation why previous works by other authors, which claim an existence of the sign problem, do not capture the continuum physics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.