Papers
Topics
Authors
Recent
2000 character limit reached

A characterization of horizontal visibility graphs and combinatorics on words (1010.1850v1)

Published 9 Oct 2010 in physics.data-an

Abstract: An Horizontal Visibility Graph (for short, HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos [B. Luque, et al., Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics [P. Flajolet and M. Noy, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique we determine asymptotically the average number of edges of HVGs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.