2000 character limit reached
Geometry of physical dispersion relations (1010.1369v2)
Published 7 Oct 2010 in hep-th, gr-qc, math-ph, and math.MP
Abstract: To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements to have predictive matter field dynamics and an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.