Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Even order periodic operators on the real line (1010.1223v1)

Published 6 Oct 2010 in math-ph and math.MP

Abstract: We consider $2p\ge 4$ order differential operator on the real line with a periodic coefficients. The spectrum of this operator is absolutely continuous and is a union of spectral bands separated by gaps. We define the Lyapunov function, which is analytic on a p-sheeted Riemann surface. The Lyapunov function has real or complex branch points. We prove the following results: (1) The spectrum at high energy has multiplicity two. (2) Endpoints of all gaps are periodic (or anti-periodic) eigenvalues or real branch points. (3) The spectrum of operator has an infinite number of open gaps and there exists only a finite number of non-real branch points for some specific coefficients (the generic case). (4) The asymptotics of the periodic, anti-periodic spectrum and branch points are determined at high energy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.