Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Genotype networks, innovation, and robustness in sulfur metabolism (1010.0934v1)

Published 5 Oct 2010 in q-bio.MN and q-bio.PE

Abstract: Metabolic networks are complex systems that comprise hundreds of chemical reactions which synthesize biomass molecules from chemicals in an organism's environment. The metabolic network of any one organism is encoded by a metabolic genotype, defined by a set of enzyme-coding genes whose products catalyze the network's reactions. Each metabolic genotype has a metabolic phenotype, such as the ability to synthesize biomass on a spectrum of different sources of chemical elements and energy. We here focus on sulfur metabolism, which is attractive to study the evolution of metabolic networks, because it involves many fewer reactions than carbon metabolism. Specifically, we study properties of the space of all possible metabolic genotypes, and analyze properties of random metabolic genotypes that are viable on different numbers of sulfur sources. We show that metabolic genotypes with the same phenotype form large connected genotype networks that extend far through metabolic genotype space. How far they reach through this space is a linear function of the number of super-essential reactions in such networks, the number of reactions that occur in all networks with the same phenotype. We show that different neighborhoods of any genotype network harbor very different novel phenotypes, metabolic innovations that can sustain life on novel sulfur sources. We also analyze the ability of evolving populations of metabolic networks to explore novel metabolic phenotypes. This ability is facilitated by the existence of genotype networks, because different neighborhoods of these networks contain very different novel phenotypes. In contrast to macromolecules, where phenotypic robustness may facilitate phenotypic innovation, we show that here the ability to access novel phenotypes does not monotonically increase with robustness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.