Constraint preserving boundary conditions for the Z4c formulation of general relativity (1010.0523v2)
Abstract: We discuss high order absorbing constraint preserving boundary conditions for the Z4c formulation of general relativity coupled to the moving puncture family of gauges. We are primarily concerned with the constraint preservation and absorption properties of these conditions. In the frozen coefficient approximation, with an appropriate first order pseudo-differential reduction, we show that the constraint subsystem is boundary stable on a four dimensional compact manifold. We analyze the remainder of the initial boundary value problem for a spherical reduction of the Z4c formulation with a particular choice of the puncture gauge. Numerical evidence for the efficacy of the conditions is presented in spherical symmetry.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.