Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Nonparametric Reconstruction of the Dark Energy Equation of State (1009.5443v1)

Published 28 Sep 2010 in astro-ph.CO

Abstract: A basic aim of ongoing and upcoming cosmological surveys is to unravel the mystery of dark energy. In the absence of a compelling theory to test, a natural approach is to better characterize the properties of dark energy in search of clues that can lead to a more fundamental understanding. One way to view this characterization is the improved determination of the redshift-dependence of the dark energy equation of state parameter, w(z). To do this requires a robust and bias-free method for reconstructing w(z) from data that does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new nonparametric reconstruction method that solves for w(z) as a statistical inverse problem, based on a Gaussian Process representation. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demonstrate the power of the method on different sets of simulated supernova data; the approach can be easily extended to include diverse cosmological probes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.