Nonparametric Reconstruction of the Dark Energy Equation of State (1009.5443v1)
Abstract: A basic aim of ongoing and upcoming cosmological surveys is to unravel the mystery of dark energy. In the absence of a compelling theory to test, a natural approach is to better characterize the properties of dark energy in search of clues that can lead to a more fundamental understanding. One way to view this characterization is the improved determination of the redshift-dependence of the dark energy equation of state parameter, w(z). To do this requires a robust and bias-free method for reconstructing w(z) from data that does not rely on restrictive expansion schemes or assumed functional forms for w(z). We present a new nonparametric reconstruction method that solves for w(z) as a statistical inverse problem, based on a Gaussian Process representation. This method reliably captures nontrivial behavior of w(z) and provides controlled error bounds. We demonstrate the power of the method on different sets of simulated supernova data; the approach can be easily extended to include diverse cosmological probes.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.