Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sums of Laplace eigenvalues - rotationally symmetric maximizers in the plane (1009.5326v1)

Published 27 Sep 2010 in math.SP

Abstract: The sum of the first $n \geq 1$ eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio $\text{(area)}3/\text{(moment of inertia)}$ for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundary conditions and Schr\"odinger eigenvalues of potentials that grow at infinity. A key ingredient in the method is the tight frame property of the roots of unity. For general convex plane domains, the disk is conjectured to maximize sums of Neumann eigenvalues.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.