G-subsets and G-orbits of Q(sqrt n) under action of the modular group (1009.4619v1)
Abstract: It is well known that $G=\langle x,y:x2=y3=1\rangle$ represents the modular group $PSL(2,Z)$, where $x:z\rightarrow\frac{-1}{z}, y:z\rightarrow\frac{z-1}{z}$ are linear fractional transformations. Let $n=k2m$, where $k$ is any non zero integer and $m$ is square free positive integer. Then the set $$Q*(\sqrt{n}):={\frac{a+\sqrt{n}}{c}:a,c,b=\frac{a2-n}{c}\in Z~\textmd{and}~(a,b,c)=1}$$ is a $G$-subset of the real quadratic field $Q(\sqrt{m})$ \cite{R9}. We denote $\alpha=\frac{a+\sqrt{n}}{c}$ in $ Q*(\sqrt{n})$ by $\alpha(a,b,c)$. For a fixed integer $s>1$, we say that two elements $\alpha(a,b,c)$, $\alpha'(a',b',c')$ of $Q*(\sqrt{n})$ are $s$-equivalent if and only if $a\equiv a'(mod~s)$, $b\equiv b'(mod~s)$ and $c\equiv c'(mod~s)$. The class $a,b,c$ contains all $s$-equivalent elements of $Q*(\sqrt{n})$ and $En_s$ denotes the set consisting of all such classes of the form $a,b,c$. In this paper we investigate proper $G$-subsets and $G$-orbits of the set $Q*(\sqrt{n})$ under the action of Modular Group $G$
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.