Sequential item pricing for unlimited supply (1009.4606v2)
Abstract: We investigate the extent to which price updates can increase the revenue of a seller with little prior information on demand. We study prior-free revenue maximization for a seller with unlimited supply of n item types facing m myopic buyers present for k < log n days. For the static (k = 1) case, Balcan et al. [2] show that one random item price (the same on each item) yields revenue within a \Theta(log m + log n) factor of optimum and this factor is tight. We define the hereditary maximizers property of buyer valuations (satisfied by any multi-unit or gross substitutes valuation) that is sufficient for a significant improvement of the approximation factor in the dynamic (k > 1) setting. Our main result is a non-increasing, randomized, schedule of k equal item prices with expected revenue within a O((log m + log n) / k) factor of optimum for private valuations with hereditary maximizers. This factor is almost tight: we show that any pricing scheme over k days has a revenue approximation factor of at least (log m + log n) / (3k). We obtain analogous matching lower and upper bounds of \Theta((log n) / k) if all valuations have the same maximum. We expect our upper bound technique to be of broader interest; for example, it can significantly improve the result of Akhlaghpour et al. [1]. We also initiate the study of revenue maximization given allocative externalities (i.e. influences) between buyers with combinatorial valuations. We provide a rather general model of positive influence of others' ownership of items on a buyer's valuation. For affine, submodular externalities and valuations with hereditary maximizers we present an influence-and-exploit (Hartline et al. [13]) marketing strategy based on our algorithm for private valuations. This strategy preserves our approximation factor, despite an affine increase (due to externalities) in the optimum revenue.