Operator monotone functions and Löwner functions of several variables (1009.3921v3)
Abstract: We prove generalizations of L\"owner's results on matrix monotone functions to several variables. We give a characterization of when a function of $d$ variables is locally monotone on $d$-tuples of commuting self-adjoint $n$-by-$n$ matrices. We prove a generalization to several variables of Nevanlinna's theorem describing analytic functions that map the upper half-plane to itself and satisfy a growth condition. We use this to characterize all rational functions of two variables that are operator monotone.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.