Existence of solutions and separation from singularities for a class of fourth order degenerate parabolic equations (1009.3148v1)
Abstract: A nonlinear parabolic equation of the fourth order is analyzed. The equation is characterized by a mobility coefficient that degenerates at 0. Existence of at least one weak solution is proved by using a regularization procedure and deducing suitable a-priori estimates. If a viscosity term is added and additional conditions on the nonlinear terms are assumed, then it is proved that any weak solution becomes instantaneously strictly positive. This in particular implies uniqueness for strictly positive times and further time-regularization properties. The long-time behavior of the problem is also investigated and the existence of trajectory attractors and, under more restrictive conditions, of strong global attractors is shown.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.