Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Pac-bayesian bounds for sparse regression estimation with exponential weights (1009.2707v2)

Published 14 Sep 2010 in math.ST, stat.CO, and stat.TH

Abstract: We consider the sparse regression model where the number of parameters $p$ is larger than the sample size $n$. The difficulty when considering high-dimensional problems is to propose estimators achieving a good compromise between statistical and computational performances. The BIC estimator for instance performs well from the statistical point of view \cite{BTW07} but can only be computed for values of $p$ of at most a few tens. The Lasso estimator is solution of a convex minimization problem, hence computable for large value of $p$. However stringent conditions on the design are required to establish fast rates of convergence for this estimator. Dalalyan and Tsybakov \cite{arnak} propose a method achieving a good compromise between the statistical and computational aspects of the problem. Their estimator can be computed for reasonably large $p$ and satisfies nice statistical properties under weak assumptions on the design. However, \cite{arnak} proposes sparsity oracle inequalities in expectation for the empirical excess risk only. In this paper, we propose an aggregation procedure similar to that of \cite{arnak} but with improved statistical performances. Our main theoretical result is a sparsity oracle inequality in probability for the true excess risk for a version of exponential weight estimator. We also propose a MCMC method to compute our estimator for reasonably large values of $p$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.