A classification (uniqueness) theorem for rotating black holes in 4D Einstein-Maxwell-dilaton theory (1009.2442v2)
Abstract: In the present paper we prove a classification (uniqueness) theorem for stationary, asymptotically flat black hole spacetimes with connected and non-degenerate horizon in 4D Einstein-Maxwell-dilaton theory with an arbitrary dilaton coupling parameter $\alpha$. We show that such black holes are uniquely specified by the length of the horizon interval, angular momentum, electric and magnetic charge and the value of the dilaton field at infinity when the dilaton coupling parameter satisfies $0\le \alpha2\le3$. The proof is based on the nonpositivity of the Riemann curvature operator on the space of the potentials. A generalization of the classification theorem for spacetimes with disconnected horizons is also given.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.