Papers
Topics
Authors
Recent
2000 character limit reached

The Uncertainty Relation for Smooth Entropies

Published 10 Sep 2010 in quant-ph, math-ph, and math.MP | (1009.2015v3)

Abstract: Uncertainty relations give upper bounds on the accuracy by which the outcomes of two incompatible measurements can be predicted. While established uncertainty relations apply to cases where the predictions are based on purely classical data (e.g., a description of the system's state before measurement), an extended relation which remains valid in the presence of quantum information has been proposed recently [Berta et al., Nat. Phys. 6, 659 (2010)]. Here, we generalize this uncertainty relation to one formulated in terms of smooth entropies. Since these entropies measure operational quantities such as extractable secret key length, our uncertainty relation is of immediate practical use. To illustrate this, we show that it directly implies security of a family of quantum key distribution protocols including BB84. Our proof remains valid even if the measurement devices used in the experiment deviate arbitrarily from the theoretical model.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.