Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exceptional orthogonal polynomials, QHJ formalism and SWKB quantization condition (1009.1944v3)

Published 10 Sep 2010 in math-ph, math.MP, and quant-ph

Abstract: We study the quantum Hamilton-Jacobi (QHJ) equation of the recently obtained exactly solvable models, related to the newly discovered exceptional polynomials and show that the QHJ formalism reproduces the exact eigenvalues and the eigenfunctions. The fact that the eigenfunctions have zeros and poles in complex locations leads to an unconventional singularity structure of the quantum momentum function $p(x)$, the logarithmic derivative of the wave function, which forms the crux of the QHJ approach to quantization. A comparison of the singularity structure for these systems with the known exactly solvable and quasi-exactly solvable models reveals interesting differences. We find that the singularities of the momentum function for these new potentials lie between the above two distinct models, sharing similarities with both of them. This prompted us to examine the exactness of the supersymmetric WKB (SWKB) quantization condition. The interesting singularity structure of $p(x)$ and of the superpotential for these models has important consequences for the SWKB rule and in our proof of its exactness for these quantal systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.