Computing Optimal Experimental Designs via Interior Point Method (1009.1909v3)
Abstract: In this paper, we study optimal experimental design problems with a broad class of smooth convex optimality criteria, including the classical A-, D- and p th mean criterion. In particular, we propose an interior point (IP) method for them and establish its global convergence. Furthermore, by exploiting the structure of the Hessian matrix of the aforementioned optimality criteria, we derive an explicit formula for computing its rank. Using this result, we then show that the Newton direction arising in the IP method can be computed efficiently via Sherman-Morrison-Woodbury formula when the size of the moment matrix is small relative to the sample size. Finally, we compare our IP method with the widely used multiplicative algorithm introduced by Silvey et al. [29]. The computational results show that the IP method generally outperforms the multiplicative algorithm both in speed and solution quality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.