Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tail behavior of stationary solutions of random difference equations: the case of regular matrices (1009.1728v3)

Published 9 Sep 2010 in math.PR

Abstract: Given a sequence $(M_{n},Q_{n}){n\ge 1}$ of i.i.d. random variables with generic copy $(M,Q)$ such that $M$ is a regular $d\times d$ matrix and $Q$ takes values in $\mathbb{R}{d}$, we consider the random difference equation (RDE) $R{n}=M_{n}R_{n-1}+Q_{n}$, $n\ge 1$. Under suitable assumptions, this equation has a unique stationary solution $R$ such that, for some $\kappa>0$ and some finite positive and continuous function $K$ on $S{d-1}:={x \in \mathbb{R}{d}:|x|=1}$, $ \lim_{t \to \infty} t{\kappa} P(xR>t)=K(x)$ for all $x \in S{d-1} $ holds true. This result is originally due to Kesten and Le Page. The purpose of this article is to show how regeneration methods can be used to provide a much shorter argument (in particular for the positivity of K). It is based on a multidimensional extension of Goldie's implicit renewal theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.