Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 30 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 116 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

L-space surgeries, genus bounds, and the cabling conjecture (1009.1130v2)

Published 6 Sep 2010 in math.GT

Abstract: We prove that if positive integer p-surgery along a knot K \subset S3 produces an L-space and it bounds a sharp 4-manifold, then the knot genus obeys the bound 2g(K) -1 \leq p - \sqrt{3p+1}. Moreover, there exists an infinite family of pairs (K_n,p_n) attaining this bound, where K_n denotes an n-fold iterated cable of the unknot and p_n \to \infty. In particular, the stated bound applies when the knot surgery produces a lens space or a connected sum thereof. Combined with work of Gordon-Luecke, Hoffman, and Matignon-Sayari, it follows that if surgery along a knot produces a connected sum of lens spaces, then the knot is either a torus knot or a cable thereof, confirming the cabling conjecture in this case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.