Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

The Orbifold-String Theories of Permutation-Type: III. Lorentzian and Euclidean Space-Times in a Large Example (1009.0809v1)

Published 4 Sep 2010 in hep-th

Abstract: To illustrate the general results of the previous paper, we discuss here a large concrete example of the orbifold-string theories of permutation-type. For each of the many subexamples, we focus on evaluation of the \emph{target space-time dimension} $\hat{D}j(\sigma)$, the \emph{target space-time signature} and the \emph{target space-time symmetry} of each cycle $j$ in each twisted sector $\sigma$. We find in particular a gratifying \emph{space-time symmetry enhancement} which naturally matches the space-time symmetry of each cycle to its space-time dimension. Although the orbifolds of $\Z{2}$-permutation-type are naturally Lorentzian, we find that the target space-times associated to larger permutation groups can be Lorentzian, Euclidean and even null (\hat{D}_{j}(\sigma)=0), with varying space-time dimensions, signature and symmetry in a single orbifold.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)