Dissipative vortex solitons in 2D-lattices
Abstract: We report the existence of stable symmetric vortex-type solutions for two-dimensional nonlinear discrete dissipative systems governed by a cubic-quintic complex Ginzburg-Landau equation. We construct a whole family of vortex solitons with a topological charge S = 1. Surprisingly, the dynamical evolution of unstable solutions of this family does not alter significantly their profile, instead their phase distribution completely changes. They transform into two-charges swirl-vortex solitons. We dynamically excite this novel structure showing its experimental feasibility.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.