Papers
Topics
Authors
Recent
2000 character limit reached

Explicit Proofs and The Flip (1009.0246v1)

Published 1 Sep 2010 in cs.CC

Abstract: This article describes a formal strategy of geometric complexity theory (GCT) to resolve the {\em self referential paradox} in the $P$ vs. $NP$ and related problems. The strategy, called the {\em flip}, is to go for {\em explicit proofs} of these problems. By an explicit proof we mean a proof that constructs proof certificates of hardness that are easy to verify, construct and decode. The main result in this paper says that (1) any proof of the arithmetic implication of the $P$ vs. $NP$ conjecture is close to an explicit proof in the sense that it can be transformed into an explicit proof by proving in addition that arithmetic circuit identity testing can be derandomized in a blackbox fashion, and (2) stronger forms of these arithmetic hardness and derandomization conjectures together imply a polynomial time algorithm for a formidable explicit construction problem in algebraic geometry. This may explain why these conjectures, which look so elementary at the surface, have turned out to be so hard.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.