Papers
Topics
Authors
Recent
2000 character limit reached

Geometric construction of voting methods that protect voters' first choices (1008.4331v2)

Published 23 Aug 2010 in cs.GT and math.CO

Abstract: We consider the possibility of designing an election method that eliminates the incentives for a voter to rank any other candidate equal to or ahead of his or her sincere favorite. We refer to these methods as satisfying the Strong Favorite Betrayal Criterion" (SFBC). Methods satisfying our strategic criteria can be classified into four categories, according to their geometrical properties. We prove that two categories of methods are highly restricted and closely related to positional methods (point systems) that give equal points to a voter's first and second choices. The third category is tightly restricted, but if criteria are relaxed slightly a variety of interesting methods can be identified. Finally, we show that methods in the fourth category are largely irrelevant to public elections. Interestingly, most of these methods for satisfying the SFBC do so onlyweakly," in that these methods make no meaningful distinction between the first and second place on the ballot. However, when we relax our conditions and allow (but do not require) equal rankings for first place, a wider range of voting methods are possible, and these methods do indeed make meaningful distinctions between first and second place.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.