Volume functions of linear series (1008.3986v2)
Abstract: The volume of a Cartier divisor is an asymptotic invariant, which measures the rate of growth of sections of powers of the divisor. It extends to a continuous, homogeneous, and log-concave function on the whole N\'eron--Severi space, thus giving rise to a basic invariant of the underlying projective variety. Analogously, one can also define the volume function of a possibly non-complete multigraded linear series. In this paper we will address the question of characterizing the class of functions arising on the one hand as volume functions of multigraded linear series and on the other hand as volume functions of projective varieties. In the multigraded setting, relying on the work of Lazarsfeld and Musta\c{t}\u{a} (2009) on Okounkov bodies, we show that any continuous, homogeneous, and log-concave function appears as the volume function of a multigraded linear series. By contrast we show that there exists countably many functions which arise as the volume functions of projective varieties. We end the paper with an example, where the volume function of a projective variety is given by a transcendental formula, emphasizing the complicated nature of the volume in the classical case.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.