Papers
Topics
Authors
Recent
2000 character limit reached

Temperature-induced crossovers in the static roughness of a one-dimensional interface (1008.3570v1)

Published 20 Aug 2010 in cond-mat.dis-nn, cond-mat.stat-mech, math-ph, math.MP, and nlin.PS

Abstract: At finite temperature and in presence of disorder, a one-dimensional elastic interface displays different scaling regimes at small and large lengthscales. Using a replica approach and a Gaussian Variational Method (GVM), we explore the consequences of a finite interface width $\xi$ on the small-lengthscale fluctuations. We compute analytically the static roughness $B(r)$ of the interface as a function of the distance $r$ between two points on the interface. We focus on the case of short-range elasticity and random-bond disorder. We show that for a finite width $\xi$ two temperature regimes exist. At low temperature, the expected thermal and random-manifold regimes, respectively for small and large scales, connect via an intermediate modified' Larkin regime, that we determine. This regime ends at a temperature-independent characteristicLarkin' length. Above a certain `critical' temperature that we identify, this intermediate regime disappears. The thermal and random-manifold regimes connect at a single crossover lengthscale, that we compute. This is also the expected behavior for zero width. Using a directed polymer description, we also study via a second GVM procedure and generic scaling arguments, a modified toy model that provides further insights on this crossover. We discuss the relevance of the two GVM procedures for the roughness at large lengthscale in those regimes. In particular we analyze the scaling of the temperature-dependent prefactor in the roughness $B(r)\sim T{2 \text{\thorn}} r{2 \zeta}$ and its corresponding exponent $\text{\thorn}$. We briefly discuss the consequences of those results for the quasistatic creep law of a driven interface, in connection with previous experimental and numerical studies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.