Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Isomorphism and embedding of Borel systems on full sets (1008.3549v2)

Published 20 Aug 2010 in math.DS

Abstract: A Borel system consists of a measurable automorphism of a standard Borel space. We consider Borel embeddings and isomorphisms between such systems modulo null sets, i.e. sets which have measure zero for every invariant probability measure. For every t>0 we show that in this category there exists a unique free Borel system (Y,S) which is strictly t-universal in the sense that all invariant measures on Y have entropy <t, and if (X,T) is another free system obeying the same entropy condition then X embeds into Y off a null set. One gets a strictly t-universal system from mixing shifts of finite type of entropy at least t by removing the periodic points and "restricting" to the part of the system of entropy <t. As a consequence, after removing their periodic points the systems in the following classes are completely classified by entropy up to Borel isomorphism off null sets: mixing shifts of finite type, mixing positive-recurrent countable state Markov chains, mixing sofic shifts, beta shifts, synchronized subshifts, and axiom-A diffeomorphisms. In particular any two equal-entropy systems from these classes are entropy conjugate in the sense of Buzzi, answering a question of Boyle, Buzzi and Gomez.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.