Papers
Topics
Authors
Recent
2000 character limit reached

Nielsen equalizer theory

Published 12 Aug 2010 in math.GN, math.AT, and math.GT | (1008.2154v2)

Abstract: We extend the Nielsen theory of coincidence sets to equalizer sets, the points where a given set of (more than 2) mappings agree. On manifolds, this theory is interesting only for maps between spaces of different dimension, and our results hold for sets of k maps on compact manifolds from dimension (k-1)n to dimension n. We define the Nielsen equalizer number, which is a lower bound for the minimal number of equalizer points when the maps are changed by homotopies, and is in fact equal to this minimal number when the domain manifold is not a surface. As an application we give some results in Nielsen coincidence theory with positive codimension. This includes a complete computation of the geometric Nielsen number for maps between tori.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.