An intrinsic formulation of the rolling manifolds problem (1008.1856v1)
Abstract: We present an intrinsic formulation of the kinematic problem of two $n-$dimensional manifolds rolling one on another without twisting or slipping. We determine the configuration space of the system, which is an $\frac{n(n+3)}2-$dimensional manifold. The conditions of no-twisting and no-slipping are decoded by means of a distribution of rank $n$. We compare the intrinsic point of view versus the extrinsic one. We also show that the kinematic system of rolling the $n$-dimensional sphere over $\mathbb Rn$ is controllable. In contrast with this, we show that in the case of $SE(3)$ rolling over $\mathfrak{se}(3)$ the system is not controllable, since the configuration space of dimension 27 is foliated by submanifolds of dimension 12.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.