Bayesian Model Selection for Beta Autoregressive Processes
Abstract: We deal with Bayesian inference for Beta autoregressive processes. We restrict our attention to the class of conditionally linear processes. These processes are particularly suitable for forecasting purposes, but are difficult to estimate due to the constraints on the parameter space. We provide a full Bayesian approach to the estimation and include the parameter restrictions in the inference problem by a suitable specification of the prior distributions. Moreover in a Bayesian framework parameter estimation and model choice can be solved simultaneously. In particular we suggest a Markov-Chain Monte Carlo (MCMC) procedure based on a Metropolis-Hastings within Gibbs algorithm and solve the model selection problem following a reversible jump MCMC approach.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.