Papers
Topics
Authors
Recent
2000 character limit reached

Stability under Galerkin truncation of A-stable Runge--Kutta discretizations in time

Published 27 Jul 2010 in math.NA and math.AP | (1007.4712v5)

Abstract: We consider semilinear evolution equations for which the linear part is normal and generates a strongly continuous semigroup and the nonlinear part is sufficiently smooth on a scale of Hilbert spaces. We approximate their semiflow by an implicit, A-stable Runge--Kutta discretization in time and a spectral Galerkin truncation in space. We show regularity of the Galerkin-truncated semiflow and its time-discretization on open sets of initial values with bounds that are uniform in the spatial resolution and the initial value. We also prove convergence of the space-time discretization without any condition that couples the time step to the spatial resolution. Then we estimate the Galerkin truncation error for the semiflow of the evolution equation, its Runge--Kutta discretization, and their respective derivatives, showing how the order of the Galerkin truncation error depends on the smoothness of the initial data. Our results apply, in particular, to the semilinear wave equation and to the nonlinear Schr\"odinger equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.