UC hierarchy and monodromy preserving deformation (1007.3450v2)
Abstract: The UC hierarchy is an extension of the KP hierarchy, which possesses not only an infinite set of positive time evolutions but also that of negative ones. Through a similarity reduction we derive from the UC hierarchy a class of the Schlesinger systems including the Garnier system and the sixth Painleve equation, which describes the monodromy preserving deformations of Fuchsian linear differential equations with certain spectral types. We also present a unified formulation of the above Schlesinger systems as a canonical Hamiltonian system whose Hamiltonian functions are polynomials in the canonical variables.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.