Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Periodicity of d-cluster-tilted algebras (1007.2811v2)

Published 16 Jul 2010 in math.RT

Abstract: It is well-known that any maximal Cohen-Macaulay module over a hypersurface has a periodic free resolution of period 2. Auslander, Reiten and Buchweitz have used this periodicity to explain the existence of periodic projective resolutions over certain finite-dimensional algebras which arise as stable endomorphism rings of Cohen-Macaulay modules. These algebras are in fact periodic, meaning that they have periodic projective resolutions as bimodules and thus periodic Hochschild cohomology as well. The goal of this article is to generalize this construction of periodic algebras to the context of Iyama's higher AR-theory. We start by considering projective resolutions of functors on a maximal (d-1)-orthogonal subcategory C of an exact Frobenius category B. If C is fixed by the d-th syzygy functor of B, then we show that this d-th syzygy functor induces the (2+d)-th syzygy on the category of finitely presented functors on the stable category of C. If C has finite type, i.e., if C = add(T) for a d-cluster tilting object T, then we show that the stable endomorphism ring of T has a quasi-periodic resolution over its enveloping algebra. Moreover, this resolution will be periodic if some higher syzygy functor is isomorphic to the identity on the stable category of C. It follows, in particular, that 2-C.Y. tilted algebras arising as stable endomorphism rings of Cohen-Macaulay modules over curve singularities, as in the work of Burban, Iyama, Keller and Reiten have periodic bimodule resolutions of period 4.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.