Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

The information-carrying capacity of certain quantum channels (1007.2723v1)

Published 16 Jul 2010 in quant-ph

Abstract: In this thesis we analyse the type of states and ensembles which achieve the capacity for certain quantum channels carrying classical information. We first concentrate on the product-state capacity of a particular quantum channel, that is, the capacity which is achieved by encoding the output states from a source into codewords comprised of states taken from ensembles of non-entangled states and sending them over copies of the quantum channel. Using the "single-letter" formula proved independently by Holevo and by Schumacher and Westmoreland we obtain the product-state capacity of the qubit quantum amplitude-damping channel, which is determined by a transcendental equation in a single real variable and can be solved numerically. We demonstrate that the product-state capacity of this channel can be achieved using a minimal ensemble of non-orthogonal pure states. Next we consider the classical capacity of two quantum channels with memory, namely a periodic channel with quantum depolarising channel branches and a convex combination of quantum channels. We prove that the classical capacity for each of the classical memory channels mentioned above is, in fact, equal to the respective product-state capacities. For those channels this means that the classical capacity is achieved without the use of entangled input-states. Next we introduce the channel coding theorem for memoryless quantum channels, providing a known proof by Winter for the strong converse of the theorem. We then consider the strong converse to the channel coding theorem for a periodic quantum channel.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube