Papers
Topics
Authors
Recent
2000 character limit reached

Tropical analytic geometry, Newton polygons, and tropical intersections

Published 15 Jul 2010 in math.AG and math.NT | (1007.2665v1)

Abstract: In this paper we use the connections between tropical algebraic geometry and rigid analytic geometry in order to prove two main results. We use tropical methods to prove a theorem about the Newton polygon for convergent power series in several variables: if f_1,...,f_n are n convergent power series in n variables with coefficients in a non-Archimedean field K, we give a formula for the valuations and multiplicities of the common zeros of f_1,...,f_n. We use rigid-analytic methods to show that stable complete intersections of tropical hypersurfaces compute algebraic multiplicities even when the intersection is not tropically proper. These results are naturally formulated and proved using the theory of tropicalizations of rigid-analytic spaces, as introduced by Einsiedler-Kapranov-Lind [EKL06] and Gubler [Gub07b]. We have written this paper to be as readable as possible both to tropical and arithmetic geometers.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.