Discrete denoising of heterogenous two-dimensional data
Abstract: We consider discrete denoising of two-dimensional data with characteristics that may be varying abruptly between regions. Using a quadtree decomposition technique and space-filling curves, we extend the recently developed S-DUDE (Shifting Discrete Universal DEnoiser), which was tailored to one-dimensional data, to the two-dimensional case. Our scheme competes with a genie that has access, in addition to the noisy data, also to the underlying noiseless data, and can employ $m$ different two-dimensional sliding window denoisers along $m$ distinct regions obtained by a quadtree decomposition with $m$ leaves, in a way that minimizes the overall loss. We show that, regardless of what the underlying noiseless data may be, the two-dimensional S-DUDE performs essentially as well as this genie, provided that the number of distinct regions satisfies $m=o(n)$, where $n$ is the total size of the data. The resulting algorithm complexity is still linear in both $n$ and $m$, as in the one-dimensional case. Our experimental results show that the two-dimensional S-DUDE can be effective when the characteristics of the underlying clean image vary across different regions in the data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.