Papers
Topics
Authors
Recent
2000 character limit reached

The geometry of right angled Artin subgroups of mapping class groups

Published 7 Jul 2010 in math.GT and math.GR | (1007.1129v2)

Abstract: We describe sufficient conditions which guarantee that a finite set of mapping classes generate a right-angled Artin group quasi-isometrically embedded in the mapping class group. Moreover, under these conditions, the orbit map to Teichmuller space is a quasi-isometric embedding for both of the standard metrics. As a consequence, we produce infinitely many genus h surfaces (for any h at least 2) in the moduli space of genus g surfaces (for any g at least 3) for which the universal covers are quasi-isometrically embedded in the Teichmuller space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.