Papers
Topics
Authors
Recent
2000 character limit reached

A Tree-Loop Duality Relation at Two Loops and Beyond

Published 1 Jul 2010 in hep-ph and hep-th | (1007.0194v2)

Abstract: The duality relation between one-loop integrals and phase-space integrals, developed in a previous work, is extended to higher-order loops. The duality relation is realized by a modification of the customary +i0 prescription of the Feynman propagators, which compensates for the absence of the multiple-cut contributions that appear in the Feynman tree theorem. We rederive the duality theorem at one-loop order in a form that is more suitable for its iterative extension to higher-loop orders. We explicitly show its application to two- and three-loop scalar master integrals, and we discuss the structure of the occurring cuts and the ensuing results in detail.

Citations (130)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.