Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 33 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Determinantal equations for secant varieties and the Eisenbud-Koh-Stillman conjecture (1007.0192v4)

Published 1 Jul 2010 in math.AG and math.AC

Abstract: We address special cases of a question of Eisenbud on the ideals of secant varieties of Veronese re-embeddings of arbitrary varieties. Eisenbud's question generalizes a conjecture of Eisenbud, Koh and StiLLMan (EKS) for curves. We prove that set-theoretic equations of small secant varieties to a high degree Veronese re-embedding of a smooth variety are determined by equations of the ambient Veronese variety and linear equations. However this is false for singular varieties, and we give explicit counter-examples to the EKS conjecture for singular curves. The techniques we use also allow us to prove a gap and uniqueness theorem for symmetric tensor rank. We put Eisenbud's question in a more general context about the behaviour of border rank under specialisation to a linear subspace, and provide an overview of conjectures coming from signal processing and complexity theory in this context.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.