The Complexity of the Homotopy Method, Equilibrium Selection, and Lemke-Howson Solutions (1006.5352v2)
Abstract: We show that the widely used homotopy method for solving fixpoint problems, as well as the Harsanyi-Selten equilibrium selection process for games, are PSPACE-complete to implement. Extending our result for the Harsanyi-Selten process, we show that several other homotopy-based algorithms for finding equilibria of games are also PSPACE-complete to implement. A further application of our techniques yields the result that it is PSPACE-complete to compute any of the equilibria that could be found via the classical Lemke-Howson algorithm, a complexity-theoretic strengthening of the result in [Savani and von Stengel]. These results show that our techniques can be widely applied and suggest that the PSPACE-completeness of implementing homotopy methods is a general principle.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.