On the uniqueness of stratifications of derived module categories (1006.5301v4)
Abstract: Recollements of triangulated categories may be seen as exact sequences of such categories. Iterated recollements of triangulated categories are analogues of geometric or topological stratifications and of composition series of algebraic objects. We discuss the question of uniqueness of such a stratification, up to ordering and derived equivalence, for derived module categories. The main result is a positive answer in the form of a Jordan H\"older theorem for derived module categories of hereditary artin algebras. We also provide examples of derived simple rings.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.