Locally Minimal Topological Groups 2 (1006.5285v1)
Abstract: We continue in this paper the study of locally minimal groups started in \cite{LocMin}. The minimality criterion for dense subgroups of compact groups is extended to local minimality. Using this criterion we characterize the compact abelian groups containing dense countable locally minimal subgroups, as well as those containing dense locally minimal subgroups of countable free-rank. We also characterize the compact abelian groups whose torsion part is dense and locally minimal. We call a topological group $G$ {\it almost minimal} if it has a closed, minimal normal subgroup $N$ such that the quotient group $G/N$ is uniformly free from small subgroups. The class of almost minimal groups includes all locally compact groups, and is contained in the class of locally minimal groups. On the other hand, we provide examples of countable precompact metrizable locally minimal groups which are not almost minimal. Some other significant properties of this new class are obtained.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.