2000 character limit reached
Total Edge Irregularity Strength of Large Graphs (1006.4501v1)
Published 23 Jun 2010 in math.CO
Abstract: Let $m:=|E(G)|$ sufficiently large and $s:=(m-1)/3$. We show that unless the maximum degree $\Delta > 2s$, there is a weighting $w:E\cup V\to {0,1,...,s}$ so that $w(uv)+w(u)+w(v)\ne w(u'v')+w(u')+w(v')$ whenever $uv\ne u'v'$ (such a weighting is called {\em total edge irregular}). This validates a conjecture by Ivanco and Jendrol' for large graphs, extending a result by Brandt, Miskuf and Rautenbach.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.